
Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 9: The ODF Format

Chapter 50. Importing XML

This chapter is mostly about importing XML data into

Office. I start by looking at XSLT import (and export)

filters, which give the best results but require the

programmer to know a great deal about XML and the

ODF file format.

The second half of the chapter is about three simpler

techniques for importing XML which require less comprehensive XML skills and no

knowledge of ODF. The drawback is that the resulting document may be less

'beautiful', often requiring some manual post-processing to remove unnecessary white

space and data.

You'd be correct in thinking that Office can already import XML, but you may be

disappointed with the results: a simple XML file, such as pay.xml shown below, is

imported unchanged, as plain text:

<?xml version="1.0"?>

<payments>

 <payment>

 <purpose>CD</purpose>

 <amount>12.95</amount>

 <tax>19.1234</tax>

 <maturity>2008-03-01</maturity>

 </payment>

 <payment>

 <purpose>DVD</purpose>

 <amount>19.95</amount>

 <tax>19.4321</tax>

 <maturity>2008-03-02</maturity>

 </payment>

 <payment>

 <purpose>Clothes</purpose>

 <amount>99.95</amount>

 <tax>18.5678</tax>

 <maturity>2008-03-03</maturity>

 </payment>

 <payment>

 <purpose>Book</purpose>

 <amount>9.49</amount>

 <tax>18.9876</tax>

 <maturity>2008-03-04</maturity>

 </payment>

</payments>

Office offers many ways of loading XML through the "All files (*.*)" popdown list in

the Open dialog. Figure 1 shows my selection of "Flat XML ODF Spreadsheet":

Topics: XSLT Filters;

Using Filters with Java;

Alternatives to XSLT

Filters: DOM Parsing,

Node and Attribute Data

Extraction, JAXB

Conversion

Example folders: "Filter

Tests" and "Utils"

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Figure 1. Selecting an XML Import Format.

Unfortunately, the result isn't a nice spreadsheet of the payments, but a Writer

document containing all the data and XML tags.

Flat XML is for encoding an OpenDocument format (ODF) document as a single text

file, which contrasts with how it's usually stored as a zipped folder of several files and

sub-folders. pay.xml isn't a Flat XML file, and so Office drops back to treating it as

plain text, and uses Writer to display it.

Incidentally, there are several Flat XML formats aimed at the different Office

applications, Writer, Calc, Draw, and Impress.

1. Filters to the Rescue

pay.xml can be opened as a spreadsheet with the help of an input filter. There are a

few ways of writing these, as explained by Fridrich Strba in his blog post "Extending

the Swiss Army knife - an overview about writing of filters for LibreOffice"

(http://fridrich.blogspot.com/2013/08/extending-swiss-army-knife-overview.html).

The easiest way of implementing an XML input filter is with XSLT (eXtensible

Stylesheet Language: Transformations). The filter is utilized by the XSLT processor

inside Office to load and transform the XML, as illustrated in Figure 2.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

Figure 2. Using an XSLT filter.

XSLT is designed for transforming XML into other textual formats; in this case, it

will convert the simple XML used by pay.xml into the Flat XML used by Calc.

Office's XSLT processor used to be Saxon (http://saxon.sourceforge.net/), a Java

API, but was replaced in 2012 by the libxslt C library (http://xmlsoft.org/libxslt/).

This implements XSLT 1.0 with some extensions, so it's best to avoid using features

from the newer XSLT 2.0.

One source for learning XLST in the context of ODF is:

OASIS OpenDocument Essentials

J. David Eisenberg, 2005

http:// books.evc-cit.info/

The book includes a chapter on filters, and an appendix that overviews XSLT and

XPath (XPath is used for locating parts of the input document for processing).

Eisenberg's website has a free draft of the text, and all the examples and support code.

The site often seems to be offline, but the book can be found elsewhere, including at

Lulu: http://www.lulu.com/shop/j-david-eisenberg/oasis-opendocument-

essentials/paperback/product-392512.html

If you feel the need for more information on XSLT, a good text by the developer of

Saxon is:

XSLT 2.0 and XPath 2.0 Programmer's Reference

Michael Kay

Wrox Pub., May 2008, 4th Ed.

There's a somewhat shorter XSLT tutorial at W3Schools:

http://www.w3schools.com/xml/xsl_intro.asp

A useful forum post, "Create XSLT filters for import and export"

(https://forum.openoffice.org/en/forum/viewtopic.php?t=3490), by user hol.sten

contains XSLT import and export filters for pay.xml (in fact, it's his example). The

filters are installed via Office's Tools > "XML Filter Settings" menu item. Clicking on

the "New" button of the filter settings window brings up a dialog containing two tabs

shown in Figure 3.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

Figure 3. The XML Filter Settings Dialog Tabs.

Figure 3 shows that I've created a "Pay" filter set containing hol.sten's import and

export filters stored in payImport.xsl and payExport.xsl. The import filter will convert

XML to Flat XML for Calc, as stated in the "Application" field of the General tab.

After clicking "Ok", the Pay filter set is added to the settings window in Figure 4.

Figure 4. The Pay Filter in the Settings Window.

When pay.xml is opened, the Pay import filter appears in the Calc section of the "All

Files (*.*) popdown list, as seen in Figure 5.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

Figure 5. The Calc Pay Import Filter.

The "XML Payments" text in Figure 5 comes from the "Name of file type" textfield in

the General tab of the dialog in Figure 3.

The resulting Calc document is shown in Figure 6.

Figure 6. Pay.xml Imported as a Spreadsheet.

1.1. The Clubs Example

There's another nice XSLT import and export filter set in chapter 9 of Eisenberg's

book. clubs.xml consists of a sequence of associations, each one made up of a

sequence of clubs. A typical club entry looks like:

<club id="Q21" charter="2002">

 <name>Castro Valley Wrestling Club</name>

 <contact>Ron Maes</contact>

 <location>Castro Valley</location>

 <phone>510-555-1491</phone>

 <email>cvwcron@example.com</email>

 <age-groups type="KCJOW"/>

 <info>Practices every Tuesday and Thursday at 5:00 P.M.

 at Castro Valley High School mat room.</info>

</club>

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

A helpful way of visualizing this information is with the XML editor at

http://xmlgrid.net/, which renders it as in Figure 7.

Figure 7. Visualization of clubs.xml.

There are 17 associations; the first is called "BAWA" and contains 11 clubs

Eisenberg's clubsImport.xsl and clubsExport.xsl filters are imported into Office using

the "XML Filter Settings" dialog in Figure 8.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

Figure 8. The XML Filter Settings Dialog Again.

I've called the filter set "Clubs", and it uses clubsImport.xsl to produce Flat XML for

Writer. There's also a Writer template called clubsTemplate.ott, which applies styles

to the imported data.

When clubs.xml is opened, the Clubs import filter appears in the Writer section of the

"All Files (*.*) popdown list, as in Figure 9.

Figure 9. The Writer Clubs Import Filter.

The start of the resulting Writer document looks like Figure 10.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

Figure 10. Clubs.xml as a Writer Document.

1.2. Command Line Importing (and Exporting)

Import filter selection can be time-consuming because of the large number listed in

"Open"s popdown list. A quicker approach is to call Office from the command line,

supplying the filename and filter name as arguments.

Most of Office's command line arguments are listed at

https://help.libreoffice.org/Common/Starting_the_Software_With_Parameters, and a

few others when office.exe is invoked with the -h option. The filter commands are --

infilter and --convert-to, which I've wrapped up in two batch scripts called infilter.bat

and convert.bat.

The hardest part of using these commands is the need to supply a filter name, which

corresponds to the "Filter name" textfield string in the General tab of the XML Filter

Settings dialog. The pay.xml import filter is "Pay", as shown in the left hand window

in Figure 3; the clubs.xml filter is "Clubs", as in Figure 8.

The infilter.bat script takes a filename and input filter name argument:

infilter pay.xml "Pay"

This causes Office to open pay.xml using the "Pay" import filter, creating the

spreadsheet shown in Figure 6.

The convert.bat script takes an Office filename and conversion string as arguments. In

the simple case, the string is the extension of the exported file. For example, the

following exports the Writer document as XML:

convert simpleText.odt xml

If there are several filters to choose from (as there are for XML), then the default one

is used; for this example the Flat XML exporter for Writer will be employed. If a

different export filter is required then its name must be appended to the conversion

string after a ":". For instance:

convert payment.ods "xml:Pay"

This exports the payments spreadsheet using the "Pay" filter, resulting in a file called

payment.xml which has the same format as the original example at the start of the

chapter.

1.3. Finding a Filter Name

The calls to infilter.bat and convert.bat rely on the user knowing a filter's name (e.g.

"Pay" or "Clubs"). I knew these because I installed them, but what about the names of

other filters in Office?

A list of filters present in OpenOffice in 2007 can be found at

https://wiki.openoffice.org/wiki/Framework/Article/Filter/FilterList_OOo_3_0.

However, a better approach is to call my FiltersInfo.java example which prints all the

filters currently installed in Office, and some extra details about the "AbiWord",

"Pay", and "Clubs" filters:

// in FiltersInfo.java

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

public class FiltersInfo

{

 public static void main(String[] args)

 {

 XComponentLoader loader = Lo.loadOffice();

 // print the names of all the filters in Office

 String[] filterNms = Info.getFilterNames();

 System.out.println("Filter Names");

 Lo.printNames(filterNms, 3);

 // print some extra info on 3 filters

 PropertyValue[] props = Info.getFilterProps("AbiWord");

 Props.showProps("AbiWord Filter", props);

 props = Info.getFilterProps("Pay");

 Props.showProps("Pay Filter", props);

 props = Info.getFilterProps("Clubs");

 Props.showProps("Clubs Filter", props);

 int flags = (int) Props.getValue("Flags", props);

 System.out.println("Filter flags: " +

 Integer.toHexString(flags));

 System.out.println(" Import: " + Info.isImport(flags));

 System.out.println(" Export: " + Info.isExport(flags));

 Lo.closeOffice();

 } // end of main()

} // end of FiltersInfo class

The output from FiltersInfo starts with a long list of filter names:

Filter Names

No. of names: 235

 "AbiWord" "Apple Keynote" "Apple Numbers"

 "Apple Pages" "BMP - MS Windows" "BroadBand eBook"

 "Calc MS Excel 2007 Binary" "Calc MS Excel 2007 VBA XML"

 :

 "ClarisWorks_Draw" "ClarisWorks_Impress" "Clubs"

 :

 "Palm_Text_Document" "PalmDoc" "Pay"

 :

 :

 "XHTML Draw File" "XHTML Impress File" "XHTML Writer File"

 "XPM"

In the above list, I've included the lines that include the "Pay" and "Clubs" filter

names.

The names are obtained by Info.getFilterNames(), which utilizes the FilterFactory

service:

// in the Info class

public static String[] getFilterNames()

{

 XNameAccess na = Lo.createInstanceMCF(XNameAccess.class,

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

 "com.sun.star.document.FilterFactory");

 if (na == null) {

 System.out.println("No Filter factory found");

 return null;

 }

 else

 return na.getElementNames();

} // end of getFilterNames()

Sometimes it's useful to know more about a filter than just it's name, such as whether

it's for importing, exporting, or both. Additional information is available as an array

of properties, by calling Info.getFilterProps() with the filter's name:

// in the Info class

public static PropertyValue[] getFilterProps(String filterNm)

{

 XNameAccess na = Lo.createInstanceMCF(XNameAccess.class,

 "com.sun.star.document.FilterFactory");

 if (na == null) {

 System.out.println("No Filter factory found");

 return null;

 }

 else {

 try {

 return (PropertyValue[]) na.getByName(filterNm);

 }

 catch(Exception e) {

 System.out.println("Could not find filter for " + filterNm);

 return null;

 }

 }

} // end of getFilterProps()

getFilterProps() is called three times in FiltersInfo.java to retrieve details about the

"AbiWord", "Pay", and "Clubs" filters. The output for "Clubs" is:

Properties for "Clubs Filter":

 UserData: [com.sun.star.documentconversion.XSLTFilter, false,

com.sun.star.comp.Writer.XMLOasisImporter,

com.sun.star.comp.Writer.XMLOasisExporter,

file:///C:/Users/Dell/Desktop/LibreOffice%20Tests/Filter%20Tests/club

sImport.xsl,

file:///C:/Users/Dell/Desktop/LibreOffice%20Tests/Filter%20Tests/club

sExport.xsl, ,]

 TemplateName:

file:///C:/Users/Dell/AppData/Roaming/LibreOffice/4/user/template/Clu

bs/clubsTemplate.ott

 Name: Clubs

 Type: Clubs

 UIComponent:

 FileFormatVersion: 0

 FilterService: com.sun.star.comp.Writer.XmlFilterAdaptor

 DocumentService: com.sun.star.text.TextDocument

 Flags: 524355

 UINames: [en-US = XML Clubs]

 UIName: XML Clubs

 Finalized: false

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

 Mandatory: false

The UserData and TemplateName properties indicate that "Clubs" contains an import

and export filter for Writer's Flat XML, and also a template.

Filter properties are explained in the online documentation for the FilterFactory

service (use lodoc FilterFactory to access it), and also in the "Properties of a

Filter" subsection of the "Integrating Import and Export Filters" section of chapter 6

of the Developer's Guide (online at:

https://wiki.openoffice.org/wiki/Documentation/DevGuide/OfficeDev/Properties_of_

a_Filter, or use loGuide "Properties of a Filter").

The most cryptic of the properties is the filter flags integer (524355 in the example

above). It's actually a collection of bitwise OR'ed hexadecimals, and FiltersInfo.java

shows how they can be accessed:

// part of FiltersInfo.java...

int flags = (int) Props.getValue("Flags", props);

System.out.println("Filter flags: " + Integer.toHexString(flags));

 // print as a hexadecimal string

System.out.println(" Import: " + Info.isImport(flags));

System.out.println(" Export: " + Info.isExport(flags));

The output is:

Filter flags: 80043

 Import: true

 Export: true

The hexadecimals that might appear in the flag are listed in the online "Properties of a

Filter" subsection

(https://wiki.openoffice.org/wiki/Documentation/DevGuide/OfficeDev/Properties_of_

a_Filter). I've included a few isXXX() methods in the Info utilities class for testing for

their presence. The above example reports that the "Clubs" filter contains both an

import and export filter.

2. Using Filters with Java

Java contains an assortment of XML processing capabilities, grouped under the JAXP

(Java API for XML Processing) heading. They include DOM and SAX parsing, XML

schema validation, and XSLT transformation. The JDK's XSLT processor is Xalan

(https://xml.apache.org/xalan-j/), which supports XSLT 1.0, and so is roughly

equivalent to Office's libxslt library. This means that I can use the "Pay" and "Clubs"

filters outside of Office by passing them to Java's Xalan processor.

There's a lot of information about JAXP online, including in Oracle's tutorial at

https://docs.oracle.com/javase/tutorial/jaxp/. Also "XSLT 2.0 and XPath 2.0

Programmer's Reference" by Michael Kay, which I mentioned earlier, includes an

appendix on JAXP.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

2.1. Importing XML with Java

My ApplyInFilter.java example converts an XML file into an Office document in two

steps. First it uses an XSLT import filter to generate Flat XML which it saves to a

temporary file. The program then loads that file into Office with one of its Flat XML

filters. The correct one is chosen by looking at the filename extension supplied for the

final document. For example:

run ApplyInFilter pay.xml payImport.xsl payment.ods

pay.xml is transformed into Flat XML with payImport.xsl. Office isn't used since

Java's XSLT processor is sufficient. However, at the next step the temporary file is

loaded using Office's "Flat XML for Spreadsheets" filter. This filter is selected by

noting the "ods" extension of payment.ods.

Another example:

run ApplyInFilter clubs.xml clubsImport.xsl clubs.odt

This converts clubs.xml into a Writer document stored in clubs.odt using the "Clubs"

import filter. ApplyInFilter.java doesn't support templates, so the data saved to

clubs.odt isn't nicely formatted like Figure 10.

The ApplyInFilter program:

public class ApplyInFilter

{

 public static void main(String[] args)

 {

 if (args.length != 3) {

 System.out.println("Usage: java ApplyInFilter

 <XML fnm> <Flat XML import filter> <new ODF>");

 return;

 }

 // convert the data to Flat XML

 String xmlStr = XML.applyXSLT(args[0], args[1]);

 if (xmlStr == null) {

 System.out.println("Filtering failed");

 return;

 }

 // save flat XML data in a temp file

 String flatFnm = FileIO.createTempFile("xml");

 FileIO.saveString(flatFnm, xmlStr);

 XComponentLoader loader = Lo.loadOffice();

 // get the type of the output file

 String odfFnm = args[2];

 String docType = Lo.ext2DocType(Info.getExt(odfFnm));

 System.out.println("Doc type: " + docType);

 // open temp file using the correct Flat XML filter

 XComponent doc = Lo.openFlatDoc(flatFnm, docType, loader);

 if (doc == null)

 System.out.println("Document creation failed");

 else {

 GUI.setVisible(doc, true);

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

 Lo.waitEnter();

 Lo.saveDoc(doc, odfFnm);

 Lo.closeDoc(doc);

 }

 Lo.closeOffice();

 } // end of main()

} // end of ApplyInFilter class

Java's XSLT processor is called by XML.applyXSLT():

// in the XML class

public static String applyXSLT(String xmlFnm, String xslFnm)

{

 try {

 TransformerFactory tf = TransformerFactory.newInstance();

 Source xslt = new StreamSource(new File(xslFnm));

 Transformer t = tf.newTransformer(xslt);

 System.out.println("Applying filter " + xslFnm +

 " to " + xmlFnm);

 Source text = new StreamSource(new File(xmlFnm));

 StreamResult result = new StreamResult(new StringWriter());

 t.transform(text, result);

 return result.getWriter().toString();

 }

 catch(Exception e)

 { System.out.println("Unable to transform " + xmlFnm +

 " with " + xslFnm);

 System.out.println(" " + e);

 return null;

 }

} // end of applyXSLT()

The resulting Flat XML is saved to a temporary file by ApplyInFilter.java, and then

the document type of the output file is obtained:

// part of ApplyInFilter.java...

String docType = Lo.ext2DocType(Info.getExt(odfFnm));

The docType string is "scalc" when the ODT file is payment.ods, and "swriter" for

clubs.odt.

Lo.openFlatDoc() uses the document type to select the correct Flat XML filter, and

passes it to Lo.openDoc() as the "FilterName" property:

// in the Lo class

public static XComponent openFlatDoc(String fnm, String docType,

 XComponentLoader loader)

{ String nm = XML.getFlatFilterName(docType);

 return openDoc(fnm, loader, Props.makeProps("FilterName", nm));

}

XML.getFlatFilterName() maps a document type to an appropriate Flat XML filter

name:

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

// in the XML class

public static String getFlatFilterName(String docType)

{

 if (docType == Lo.WRITER_STR)

 return "OpenDocument Text Flat XML";

 else if (docType == Lo.CALC_STR)

 return "OpenDocument Spreadsheet Flat XML";

 else if (docType == Lo.DRAW_STR)

 return "OpenDocument Drawing Flat XML";

 else if (docType == Lo.IMPRESS_STR)

 return "OpenDocument Presentation Flat XML";

 else {

 System.out.println("No Flat XML filter for this

 document type; using Flat text");

 return "OpenDocument Text Flat XML";

 }

} // end of getFlatFilterName()

2.2. Exporting XML with Java

My ApplyOutFilter.java example saves the specified document in Flat XML form to a

temporary file. Then it applies an XSLT output filter to transform it into simple XML,

which is saved in a new file. For example:

run ApplyOutFilter payment.ods payExport.xsl payEx.xml

payment.ods contains the spreadsheet shown in Figure 6, and the transformation fills

payEx.xml with text almost identical to that on the first page of the chapter.

Another example:

run ApplyOutFilter clubs.odt clubsExport.xsl clubsEx.xml

clubs.odt must contain data formatted by the clubs template (i.e. like the example in

Figure 10). This is necessary because clubsExport.xsl utilizes paragraph styles to

decide how to change the text.

I had to slightly modify the style names used in Eisenberg's export filter. He utilized

names containing spaces (e.g. "Club Name", "Club Code", "Age Groups", and "Club

Info"), but Office automatically changes spaces inside names to "_20_". So I had to

change the XSLT rules to refer to these names (i.e. "Club_20_Name",

"Club_20_Code", "Age_20_Groups", and "Club_20_Info").

The ApplyOutFilter program:

public class ApplyOutFilter

{

 public static void main(String[] args)

 {

 if (args.length != 3) {

 System.out.println("Usage: java ApplyOutFilter <XML file>

 <Flat XML export filter> <new XML file>");

 return;

 }

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(args[0], loader);

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

 if (doc == null) {

 System.out.println("Could not open document: " + args[0]);

 Lo.closeOffice();

 return;

 }

 // save flat XML data

 String flatFnm = FileIO.createTempFile("xml");

 Lo.saveDoc(doc, flatFnm);

 Lo.closeDoc(doc);

 // use XSLT to convert Flat XML into simple XML

 String filteredXML = XML.applyXSLT(flatFnm, args[1]);

 if (filteredXML == null)

 System.out.println("Filtering failed");

 else {

 // indent, print, and save

 String xmlStr = XML.indent2Str(filteredXML);

 System.out.println(xmlStr);

 FileIO.saveString(args[2], xmlStr);

 }

 Lo.closeOffice();

 } // end of main()

} // end of ApplyOutFilter class

At the end of ApplyOutFilter.java, the XML text in xmlStr is indented and printed.

The indention is carried out by XML.indent2Str() which calls XML.applyXSLT2str()

with an indenting transformation loaded from indent.xsl:

// in the XML class

// global

private static final String INDENT_FNM = "indent.xsl";

 // for indenting XML tags, and adding newlines between tags

public static String indent2Str(String xmlStr)

{ return applyXSLT2str(xmlStr,

 FileIO.getUtilsFolder()+INDENT_FNM);

}

applyXSLT2str() is a variant of XML.applyXSLT() which reads XML from a string

rather than a file.

3. Alternatives to XSLT Filters

The obvious drawback of the XSLT filter approach is that filter writing requires the

programmer to be knowledgable about XSLT, XPath, and the details of the Flat XML

format.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

Another way to write import and export filter is to utilize the ImportFilter and

ExportFilter services in the com.sun.star.document module, which are shown in

Figure 11.

Figure 11. The ImportFilter and ExportFilter Services.

These services allow the implementation of non-XML based transformations by

utilizing the ImportFilter and ExportFilter services rather than their XMLImportFilter

and XMLExportFilter subclasses. The subclasses employ SAX, an event-driven way

of parsing XML.

If you're interested in using ImportFilter and ExportFilter, the Developer's guide gives

some details in the "Integrating Import and Export Filters" section of chapter 6 on

"Office Development". The information is also online, starting at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/OfficeDev/Integrating_Im

port_and_Export_Filters, or use loGuide "Import and Export Filters".

But I'm not going to use these services due to their complexity, and I'm about to stop

using XSLT as well. Instead I'm going to look at three easier ways to import XML

into Office:

1. Data extraction by DOM parsing;

2. Node and attribute data extraction as labeled strings;

3. JAXB conversion of XML to Java objects.

The drawback of these simpler approaches is that the imported data will usually need

some post-processing to make it look as good as import filter results.

3.1. Data Extraction by DOM Parsing

Document Object Model (DOM) parsing converts an XML document into a tree of

nodes; the three main types are:

 Elements;

 Attributes;

 The data/values held by the elements and attributes.

The DOM API is quite low-level, supporting functions such as getFirstChild() and

getNextSibling() in Java's Node class. This motivated the introduction of XPath, and

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

other tree models such as JDOM. Fortunately, I won't be needing those more

advanced features.

Nodes are found by searching for their name. When a possible match is discovered,

the node's children usually need to be examined to determine the node type. For

instance, node data has the type Node.TEXT_NODE, while an attribute has the type

Node.ATTRIBUTE.

There are many online tutorials on Java and DOM, such as Oracle's at

https://docs.oracle.com/javase/tutorial/jaxp/dom. Two other good ones are mkyong's

starting at http://www.mkyong.com/tutorials/java-xml-tutorials/ and "Easy DOM

Parsing in Java" by Eric Bruno at http://www.drdobbs.com/jvm/easy-dom-parsing-in-

java/231002580. I've 'borrowed' some of Bruno's DOM functions for my XML.java

support class, and his company.xml example.

A textbook on Java and XML:

Pro XML Development with Java Technology

Ajay and Deepak Vohra

Apress, 2006

The company.xml file contains details about three companies:

<?xml version="1.0" encoding="UTF-8" ?>

<Companies>

 <Company>

 <Name>ABC</Name>

 <Executive type="CEO">

 <LastName>Smith</LastName>

 <FirstName>Jim</FirstName>

 <street>123 Broad Street</street>

 <city>Manchester</city>

 <state>Cheshire</state>

 <zip>11234</zip>

 </Executive>

 </Company>

 <Company>

 <Name>NBC</Name>

 <Executive type="President">

 <LastName>Jones</LastName>

 <FirstName>Lucy</FirstName>

 <street>23 Bradford St</street>

 <city>Asbury</city>

 <state>Lincs</state>

 <zip>33451</zip>

 </Executive>

 </Company>

 <Company>

 <Name>BBC</Name>

 <Executive type="Boss">

 <LastName>Singh</LastName>

 <FirstName>Oxley</FirstName>

 <street>16d Towers</street>

 <city>Wimbledon</city>

 <state>London</state>

 <zip>77392</zip>

 </Executive>

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

 </Company>

</Companies>

When writing DOM code, it helps to visualize its structure. One way is to load the file

into the editor at http://xmlgrid.net/, which displays the tree-like structure in Figure

12.

Figure 12. The Tree Structure of company.xml.

Clicking on the arrow heads expand or contract the tree view.

My ExamineCompany.java example loads this data as a DOM tree, and extracts

various information:

// in ExamineCompany.java

public class ExamineCompany

{

 public static void main(String[] args) throws Exception

 {

 Document doc = XML.loadDoc("company.xml");

 NodeList root = doc.getChildNodes(); // get the document's root

 // move down the tree to the executive in the first company node

 Node comps = XML.getNode("Companies", root);

 Node comp = XML.getNode("Company", comps.getChildNodes());

 Node exec = XML.getNode("Executive", comp.getChildNodes());

 // print the executive's data

 String execType = XML.getNodeAttr("type", exec);

 NodeList exNodes = exec.getChildNodes();

 String lastName = XML.getNodeValue("LastName", exNodes);

 String firstName = XML.getNodeValue("FirstName", exNodes);

 String street = XML.getNodeValue("street", exNodes);

 String city = XML.getNodeValue("city", exNodes);

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

 String state = XML.getNodeValue("state", exNodes);

 String zip = XML.getNodeValue("zip", exNodes);

 System.out.println(execType);

 System.out.println(lastName + ", " + firstName);

 System.out.println(street);

 System.out.println(city + ", " + state + " " + zip);

 // get all the data in the tree for a given node/tag name

 NodeList lnNodes = doc.getElementsByTagName("LastName");

 ArrayList<String> lastnames = XML.getNodeValues(lnNodes);

 System.out.println("All lastnames:");

 for(String lastname: lastnames)

 System.out.println(" " + lastname);

 } // end of main()

} // end of ExamineCompany class

The program outputs details about the first company, and the lastnames of all the

company bosses:

CEO

Smith, Jim

123 Broad Street

Manchester, Cheshire 11234

All lastnames:

 Smith

 Jones

 Singh

XML.getNode() searches through a list of nodes, and returns the first with the

specified tag name:

// in the XML class

public static Node getNode(String tagName, NodeList nodes)

{

 for (int i = 0; i < nodes.getLength(); i++) {

 Node node = nodes.item(i);

 if (node.getNodeName().equalsIgnoreCase(tagName))

 return node;

 }

 return null;

} // end of getNode()

XML.getNodeValue() looks for a node in a list based on its tag name, and extracts the

data stored beneath that node.

// in the XML class

public static String getNodeValue(String tagName, NodeList nodes)

{

 if (nodes == null)

 return "";

 for (int i = 0; i < nodes.getLength(); i++) {

 Node n = nodes.item(i);

 if (n.getNodeName().equalsIgnoreCase(tagName))

 return getNodeValue(n);

 }

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

 return "";

} // end of getNodeValue()

The second version of XML.getNodeValue() retrieves the text from a node's

TEXT_NODE child (if there is one):

// in the XML class

public static String getNodeValue(Node node)

{

 if (node == null)

 return "";

 NodeList childNodes = node.getChildNodes();

 for (int i = 0; i < childNodes.getLength(); i++) {

 Node n = childNodes.item(i);

 if (n.getNodeType() == Node.TEXT_NODE)

 return n.getNodeValue().trim();

 }

 return "";

} // end of getNodeValue()

XML.getNodeValues() constructs a list of the data stored in all the supplied nodes:

// in the XML class

public static ArrayList<String> getNodeValues(NodeList nodes)

{

 if (nodes == null)

 return null;

 ArrayList<String> vals = new ArrayList<String>();

 for (int i = 0; i < nodes.getLength(); i++) {

 String val = getNodeValue(nodes.item(i));

 if (val != null)

 vals.add(val);

 }

 return vals;

} // end of getNodeValues()

XML.getNodeAttr() extracts data from a node's attribute:

// in the XML class

public static String getNodeAttr(String attrName, Node node)

{

 if (node == null)

 return "";

 NamedNodeMap attrs = node.getAttributes();

 if (attrs == null)

 return "";

 for (int i = 0; i < attrs.getLength(); i++) {

 Node attr = attrs.item(i);

 if (attr.getNodeName().equalsIgnoreCase(attrName))

 return attr.getNodeValue().trim();

 }

 return "";

} // end of getNodeAttr()

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

Converting XML to Spreadsheet Data

It's fairly easy to map XML data into a spreadsheet format of rows and columns.

Consider pay.xml from earlier:

<?xml version="1.0"?>

<payments>

 <payment>

 <purpose>CD</purpose>

 <amount>12.95</amount>

 <tax>19.1234</tax>

 <maturity>2008-03-01</maturity>

 </payment>

 <payment>

 <purpose>DVD</purpose>

 <amount>19.95</amount>

 <tax>19.4321</tax>

 <maturity>2008-03-02</maturity>

 </payment>

 <payment>

 <purpose>Clothes</purpose>

 <amount>99.95</amount>

 <tax>18.5678</tax>

 <maturity>2008-03-03</maturity>

 </payment>

 <payment>

 <purpose>Book</purpose>

 <amount>9.49</amount>

 <tax>18.9876</tax>

 <maturity>2008-03-04</maturity>

 </payment>

</payments>

It can be viewed as a sequence of payment objects, each containing four fields

(purpose, amount, tax, and maturity). Each payment object can be mapped to a

spreadsheet row, and its fields to four columns in that row. This format can be

represented by a 2D array, which is easily constructed using the DOM API.

My CreatePay.java example utilizes XML.getAllNodeValues() to build a 2D array

from the pay.xml data, and calls Calc.setArray() to add the data to a new Calc

document:

// in CreatePay.java

public class CreatePay

{

 public static void main(String args[])

 {

 Document xdoc = XML.loadDoc("pay.xml");

 NodeList pays = xdoc.getElementsByTagName("payment");

 if (pays == null)

 return;

 Object[][] data = XML.getAllNodeValues(pays,

 new String[]{"purpose", "amount", "tax", "maturity"});

 Lo.printTable("payments", data);

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 Calc.setArray(sheet, "A1", data);

 // Lo.saveDoc(doc, "payCreated.ods");

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

 } // end of main()

} // end of CreatePay class

The list of payment nodes is obtained using:

// part of CreatePay.java...

NodeList pays = xdoc.getElementsByTagName("payment");

The 2D array of payment data is constructed by:

// part of CreatePay.java...

Object[][] data = XML.getAllNodeValues(pays,

 new String[]{"purpose", "amount", "tax", "maturity"});

The first argument of getAllNodeValues() is the list of nodes to be scanned, and the

second parameter is an array of tag names. The named nodes are assumed to be

children of each node in the list, and their data becomes one row in the 2D array. The

method's code:

// in the XML class

public static Object[][] getAllNodeValues(NodeList rowNodes,

 String[] colIDs)

{ int numRows = rowNodes.getLength();

 int numCols = colIDs.length;

 Object[][] data = new Object[numRows+1][numCols];

 // put column names in first row of array

 for (int col = 0; col < numCols; col++)

 data[0][col] = Lo.capitalize(colIDs[col]);

 for (int i = 0; i < numRows; i++) {

 // extract column data for ith row

 NodeList colNodes = rowNodes.item(i).getChildNodes();

 for (int col = 0; col < numCols; col++)

 data[i+1][col] = getNodeValue(colIDs[col], colNodes);

 }

 return data;

} // end of getAllNodeValues()

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 23 © Andrew Davison 2017

XML.getAllNodeValues() also adds a header row to the array made up of the tag

names.

The resulting table is printing by Lo.printTables():

-- payments ----------------

 Purpose Amount Tax Maturity

 CD 12.95 19.1234 2008-03-01

 DVD 19.95 19.4321 2008-03-02

 Clothes 99.95 18.5678 2008-03-03

 Book 9.49 18.9876 2008-03-04

Calc.setArray() adds the table to the spreadsheet, which ends up like Figure 13.

Figure 13. The Spreadsheet Generated by CreatePay.java.

XML.getAllNodeValues() doesn't always produce such good results, as illustrated by

the CreateAssoc.java example which converts part of clubs.xml into a spreadsheet.

As explained earlier, clubs.xml consists of a sequence of associations, with each one

made up of a sequence of clubs. The most natural spreadsheet mapping would be to

assign each association to its own sheet, and convert each club into a row on that

sheet.

A club consists of seven elements and two attributes, as seen in the following

example:

<club id="Q21" charter="2002">

 <name>Castro Valley Wrestling Club</name>

 <contact>Ron Maes</contact>

 <location>Castro Valley</location>

 <phone>510-555-1491</phone>

 <email>cvwcron@example.com</email>

 <age-groups type="KCJOW"/>

 <info>Practices every Tuesday and Thursday at 5:00 P.M.

 at Castro Valley High School mat room.</info>

</club>

Probably the best spreadsheet representation would be to use nine columns, so the

attributes could be listed. This approach is employed by the xmlgrid.net website as

shown in Figure 14.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 24 © Andrew Davison 2017

Figure 14. Part of the Clubs Information.

Unfortunately, XML.getAllNodeValues() as currently coded doesn't extract attribute

information, so the id and charter data will be missed.

The CreateAssoc.java example loads clubs.xml, and selects the first association. Its

list of clubs is passed to XML.getAllNodeValues() for conversion into an array. The

complete program is:

// in CreateAssoc.java

public class CreateAssoc

{

 public static void main(String args[])

 {

 Document xdoc = XML.loadDoc("clubs.xml");

 NodeList root = xdoc.getChildNodes();

 // get the first association

 Node cdb = XML.getNode("club-database", root);

 Node assoc1 = XML.getNode("association", cdb.getChildNodes());

 NodeList clubs = assoc1.getChildNodes();

 // convert clubs information into an array

 Object[][] data = XML.getAllNodeValues(clubs,

 new String[]{"name", "contact", "location", "phone", "email"});

 Lo.printTable("clubs", data);

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 Calc.setArray(sheet, "A1", data);

 // Lo.saveDoc(doc, "clubsCreated.ods");

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

 } // end of main()

} // end of CreateAssoc class

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 25 © Andrew Davison 2017

XML.getAllNodeValues() only requests data for five of the seven elements ("name",

"contact", "location", "phone", "email") to reduce the information returned. The

resulting spreadsheet is shown in Figure 15.

Figure 15. Part of the Spreadsheet Generated by CreateAssoc.java.

An obvious issue is the empty rows between the clubs data, caused by the simple

XML.getAllNodeValues() implementation. It assumes that every node supplies one

row of data because of its data element child. Howevere, each club also contains

attributes which adds an extra empty row to the output.

3.2. Node and Attribute Data Extraction as Labeled Strings

Not all XML data can be so easily mapped to a 2D format, especially collections such

as weather.xml:

<?xml version="1.0" encoding="UTF-8"?><current>

 <city id="1610780" name="Hat Yai">

 <coord lat="7.01" lon="100.48"/>

 <country>TH</country>

 <sun rise="2017-01-01T23:30:31" set="2017-01-02T11:14:18"/>

 </city>

 <temperature max="25" min="25" unit="metric" value="25"/>

 <humidity unit="%" value="94"/>

 <pressure unit="hPa" value="1011"/>

 <wind>

 <speed name="Gentle Breeze" value="3.6"/>

 <gusts/>

 <direction code="NNE" name="North-northeast" value="30"/>

 </wind>

 <clouds name="broken clouds" value="75"/>

 <visibility value="5000"/>

 <precipitation mode="no"/>

 <weather icon="10n" number="501" value="moderate rain"/>

 <lastupdate value="2017-01-02T15:30:00"/>

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 26 © Andrew Davison 2017

</current>

This data was downloaded from OpenWeatherMap using the API at

http://api.openweathermap.org. Unlike pay.xml or clubs.xml there's no sequence of

objects that would naturally become rows of a spreadsheet. In addition, the data is

mostly represented by attributes rather than text nodes.

In situations like this, a good general approach is to convert the XML to simpler text,

removing XML labels except for the element and attribute names. As a result, my

ExtractXMLInfo.java example produces the following output when applied to

weather.xml:

current

 city id= "1610780" name= "Hat Yai"

 coord lat= "7.01" lon= "100.48"

 country: "TH"

 sun rise= "2017-01-01T23:30:31" set= "2017-01-02T11:14:18"

 temperature max= "25" min= "25" unit= "metric" value= "25"

 humidity unit= "%" value= "94"

 pressure unit= "hPa" value= "1011"

 wind

 speed name= "Gentle Breeze" value= "3.6"

 gusts

 direction code= "NNE" name= "North-northeast" value= "30"

 clouds name= "broken clouds" value= "75"

 visibility value= "5000"

 precipitation mode= "no"

 weather icon= "10n" number= "501" value= "moderate rain"

 lastupdate value= "2017-01-02T15:30:00"

Line indentation is retained, and is utilized when the data is loaded into Office.

As another example, consider pay.xml which ExtractXMLInfo.java converts into:

payments

 payment

 purpose: "CD"

 amount: "12.95"

 tax: "19.1234"

 maturity: "2008-03-01"

 payment

 purpose: "DVD"

 amount: "19.95"

 tax: "19.4321"

 maturity: "2008-03-02"

 payment

 purpose: "Clothes"

 amount: "99.95"

 tax: "18.5678"

 maturity: "2008-03-03"

 payment

 purpose: "Book"

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 27 © Andrew Davison 2017

 amount: "9.49"

 tax: "18.9876"

 maturity: "2008-03-04"

The elements and attributes with data are highlighted by adding a ":" or "=" after

their names. Also, the data is always doubly quoted.

ExtractXMLInfo.java travels over the DOM tree, printing what it finds to a text file:

// in ExtractXMLInfo.java

public static void main(String[] args) throws Exception

{

 if (args.length != 1) {

 System.out.println("Usage: run ExtractXMLInfo <XML file>");

 return;

 }

 Document doc = XML.loadDoc(args[0]);

 if (doc == null)

 return;

 String fname = Info.getName(args[0]);

 String outFnm = fname + "XML.txt";

 System.out.println("Writing XML data from " + args[0] +

 " to " + outFnm);

 PrintWriter pw = new PrintWriter(new FileWriter(outFnm));

 NodeList root = doc.getChildNodes();

 // there may be multiple trees; visit each one

 for (int i = 0; i < root.getLength(); i++) {

 visitNode(pw, root.item(i), "");

 pw.write("\n");

 }

 pw.close();

} // end of main()

visitNode() prints the node's tag, any attribute data, any text child node data, and

recursively visits the rest of the node's children:

// part of ExtractXMLInfo.java

private static void visitNode(PrintWriter pw, Node node, String ind)

{

 pw.write(ind + node.getNodeName());

 visitAttrs(pw, node);

 // examine all the child nodes

 NodeList nodeList = node.getChildNodes();

 for (int i = 0; i < nodeList.getLength(); i++) {

 Node child = nodeList.item(i);

 if (child.getNodeType() == Node.TEXT_NODE) {

 String trimmedVal = child.getNodeValue().trim();

 if (trimmedVal.length() == 0)

 pw.write("\n");

 else

 pw.write(": \"" + trimmedVal + "\"");

 // element names with values end with ':'

 }

 else if (child.getNodeType() == Node.ELEMENT_NODE)

 visitNode(pw, child, ind+" ");

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 28 © Andrew Davison 2017

 }

} // end of visitNode()

visitAttrs() prints attribute names and data:

// part of ExtractXMLInfo.java

private static void visitAttrs(PrintWriter pw, Node node)

{

 NamedNodeMap attrs = node.getAttributes();

 if (attrs != null) {

 for (int i = 0; i < attrs.getLength(); i++) {

 Node attr = attrs.item(i);

 pw.write(" " + attr.getNodeName() + "= \"" +

 attr.getNodeValue() + "\"");

 // attribute names end with '='

 }

 }

} // end of visitAttrs()

When ExtractXMLInfo.java has finished stripping the XML, the next stage is to call

BuildXMLSheet.java to load the text into Office as a Calc sheet. This is done by

converting it into a 2D array which is added to the spreadsheet by Calc.setArray().

The main() function of BuildXMLSheet.java calls getData() to create the array:

// in BuildXMLSheet.java

public static void main(String[] args)

{

 if (args.length != 1) {

 System.out.println("Usage: run BuildXMLSheet <XML textfile>");

 return;

 }

 Object[][] data = getData(args[0]);

 Lo.printTable(args[0] + " data", data);

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 Lo.delay(2000);

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 Calc.setArray(sheet, "A1", data);

 // Lo.saveDoc(doc, "createdSS.ods");

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

 } // end of main()

getData() builds the array in two steps: initially a list of differently sized arrays is

created, one for each input line. Then the list is converted into a 2D array where every

row has the same length.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 29 © Andrew Davison 2017

// part of BuildXMLSheet.java

private static Object[][] getData(String fnm)

{

 int maxCols = 0; // max number of columns across all rows

 // each input line is stored as an array inside a list

 ArrayList<Object[]> rows = new ArrayList<Object[]>();

 System.out.println("Reading data from " + fnm);

 try {

 BufferedReader br = new BufferedReader(new FileReader(fnm));

 String line;

 while ((line = br.readLine()) != null) {

 Object[] toks = splitLine(line);

 // read a line as an array of tokens (strings)

 if (toks.length > 0)

 rows.add(toks);

 if (toks.length > maxCols)

 maxCols = toks.length;

 }

 }

 catch(IOException e) {

 System.out.println("Could not read " + fnm);

 return null;

 }

 // convert list of different length arrays into a

 // fixed length 2D array

 Object[][] data = new Object[rows.size()][maxCols];

 for (int r = 0; r < rows.size(); r++) {

 Object[] row = rows.get(r);

 for (int c = 0; c < maxCols; c++) {

 if (c >= row.length)

 data[r][c] = ""; // pad out array row with empty strings

 else

 data[r][c] = row[c];

 }

 }

 return data;

} // end of getData()

splitLine() converts an input line into an array of tokens.

// part of BuildXMLSheet.java

private static String[] splitLine(String ln)

{

 ln += " "; // To detect last token when not quoted...

 boolean inQuote = false;

 boolean isIndenting = true;

 int numSpaces = 0;

 StringBuilder word = new StringBuilder();

 ArrayList<String> toks = new ArrayList<String>();

 // used to store tokens for the final array

 for (int i = 0; i < ln.length(); i++) {

 char ch = ln.charAt(i);

 if (ch != ' ' && isIndenting)

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 30 © Andrew Davison 2017

 isIndenting = false;

 if (ch == ' ' && isIndenting) {

 numSpaces++;

 if (numSpaces%2 == 0)

 toks.add(""); // convert two space indent into ""

 }

 else if (ch == '\"' || ch == ' ' && !inQuote) {

 // treat a double quoted string as one token

 if (ch == '\"')

 inQuote = !inQuote;

 if (!inQuote && word.length() > 0) {

 char lastCh = word.charAt(word.length()-1);

 if ((lastCh == ':') || (lastCh == '='))

 // strip element and attribute assignment symbols

 word.deleteCharAt(word.length()-1);

 toks.add(word.toString());

 word.delete(0, word.length());

 }

 }

 else

 word.append(ch);

 }

 return toks.toArray(new String[toks.size()]);

} // end of splitLine()

Every two spaces at the start of a line is stored as an empty string in the row array.

These strings will later occupy spreadsheet cells at the start of a row, causing the

actual data to be 'indented' to cells further to the right.

Special care is taken to treat a doubly quoted string as a single token, and any word

ending with ':' or '=' has that character stripped away. These characters signify that the

element or attribute name has associated data.

Figure 16 shows how the weather data is loaded as a spreadsheet by

BuildXMLSheet.java.

Figure 16. BuildXMLSheet Applied to Weather Data.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 31 © Andrew Davison 2017

Figure 17 shows the results for the payments data.

Figure 17. BuildXMLSheet Applied to Payments Data.

3.3. JAXB Conversion of XML to Java Objects

Java Architecture for XML Binding (JAXB) provides methods for unmarshalling

(converting) XML documents into Java classes and objects, and for marshalling Java

objects back into XML documents. I'm interested in the unmarshalling parts so data

can be passed to Office as Java objects rather than as XML.

Most of the magic of the XML-to-Java conversion is performed by Java's xjc.exe tool

which comes as part of the JDK (you'll find it in %java_home%\bin\ on Windows).

xjc processes an XML schema (an XSD file) rather than XML since the schema

contains information about the XML's underlying structure.

The good news is that there are websites, such as freeformatter.com, which can

generate XSD from supplied XML (http://www.freeformatter.com/xsd-

generator.html). I employed its "Salami slice" translator so that the Java code

generated later by xjc is a bit simpler to read. freeformatter.com converted pay.xml

into the following XSD:

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="purpose" type="xs:string"/>

 <xs:element name="amount" type="xs:float"/>

 <xs:element name="tax" type="xs:float"/>

 <xs:element name="maturity" type="xs:date"/>

 <xs:element name="payment">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="purpose"/>

 <xs:element ref="amount"/>

 <xs:element ref="tax"/>

 <xs:element ref="maturity"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 32 © Andrew Davison 2017

 <xs:element name="payments">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="payment"

 maxOccurs="unbounded" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The schema gives the names and types for each field in a payment object, and makes

payments a sequence of payment objects.

A good tutorial on XSD can be found at w3schools.com:

http://www.w3schools.com/Xml/schema_intro.asp

If the resulting schema is stored in pay.xsd, then xjc generates Java classes like so:

xjc -p Pay pay.xsd

The –p option supplies a package name which causes the potentially numerous classes

to be stored in a folder of that name. Details about xjc can be found at

http://docs.oracle.com/javase/6/docs/technotes/tools/share/xjc.html, or by calling xjc -

help.

Three classes are written to the Pay\ folder: Payments.java, Payment.java, and

ObjectFactory.java. The first two are Java version of the XML elements, while

ObjectFactory is used to create the Java objects at runtime. Figure 18 shows class

diagrams for the code.

Figure 18. The Payments Class Diagrams.

As you might expect, the XML sequence of Payment objects inside Payments is

implemented as a list in Java.

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 33 © Andrew Davison 2017

The details of the ObjectFactory aren't important, but the get/set methods in the

Payments and Payment classes will be useful. My UnmarshallPay.java example

shows how to use these classes:

// in UnmarshallPay.java

import java.io.*;

import java.util.*;

import javax.xml.bind.*;

import Pay.*; // the package for the Pay classes

public class UnmarshallPay

{

 public static void main(String[] args)

 {

 try {

 // initialize the Payments objects using pay.xml

 JAXBContext jaxbContext =

 JAXBContext.newInstance(Payments.class);

 Unmarshaller jaxbUnmarshaller =

 jaxbContext.createUnmarshaller();

 Payments pays = (Payments) jaxbUnmarshaller.unmarshal(

 new File("pay.xml"));

 List<Payment> payList = pays.getPayment();

 // print payment names and amounts

 System.out.println("Payments");

 for(Payment p : payList)

 System.out.println(" " + p.getPurpose() +

 ": " + p.getAmount());

 }

 catch (JAXBException e) {

 e.printStackTrace();

 }

 } // end of main()

} // end of UnmarshallPay class

main() creates an Unmarshaller object for the Payments class, which is initialized

with data from pay.xml. It then iterates through the Payment objects and prints their

purpose and amount fields. The output is:

Payments

 CD: 12.95

 DVD: 19.95

 Clothes: 99.95

 Book: 9.49

Now that the XML data is available through Java (using various get methods), it is

quite easy to extend UnmarshallPay.java to write it into an Office document.

clubs.xml as Java Code

The JAXB manipulation of clubs.xml follows the same steps as used on pay.xml:

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 34 © Andrew Davison 2017

1. Convert clubs.xml to XSD at freeformatter.com using the "Salami Slice"

mapping.

2. Convert company.xsd into Java classes with xjc:

xjc -p Clubs clubs.xsd

3. Compile the Clubs package:

javac Clubs/*.java

Figure 19 shows the Clubs class diagrams.

Figure 19. The Clubs Class Diagrams.

The top-level class is ClubDatabase which maintains a list of Association objects.

Each Association object holds a list of Club objects. Club contains get/set methods for

accessing its fields. My UnmarshallClubs.java example shows how to use these

classes:

// in UnmarshallClubs.java

import java.io.*;

import java.util.*;

import javax.xml.bind.*;

import Clubs.*; // the package for the Club classes

public class UnmarshallClubs

{

 public static void main(String[] args)

 {

 try {

 // initialize the Clubs objects using clubs.xml

 JAXBContext jaxbContext =

 JAXBContext.newInstance(ClubDatabase.class);

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 35 © Andrew Davison 2017

 Unmarshaller jaxbUnmarshaller =

 jaxbContext.createUnmarshaller();

 ClubDatabase cd = (ClubDatabase) jaxbUnmarshaller.unmarshal(

 new File("clubs.xml"));

 List<Association> assocList = cd.getAssociation();

 // print club names for all the associations

 System.out.println("Associations");

 for(Association assoc : assocList) {

 System.out.println(" " + assoc.getId());

 List<Club> clubs = assoc.getClub();

 for(Club club : clubs)

 System.out.println(" " + club.getName());

 }

 }

 catch (JAXBException e) {

 e.printStackTrace();

 }

 } // end of main()

} // end of UnmarshallClubs class

The unmarshalling is similar to before except that the ClubDatabase object is

initialized with data from clubs.xml. The code iterates through the clubs in each

association, printing their names:

Associations

 BAWA

 Castro Valley Wrestling Club

 Coastside Grapplers

 Dixon Ram Wrestling

 East Bay Freestylers

 Fairfield WrestlingClub

 Godfather Wrestling Club

 Golden Gate Wrestling Club

 Mat Club USA

 Pirate Wrestling Club

 SF Elite Wrestling

 Titan Wrestling Club

 CAGWA

 Big Bear Grizzlies Wrestling Club

 California Grapplers Youth Wrestling

 :

 :

 South Coast Wrestling Club

 West Hills Hawks

Naming Conflicts

The xjc tool works so well that a deep understanding of JAXB isn't usually needed.

The exception is when the XML contains a name conflict, which occurs if two or

more attributes have the same name.

There's a number of "value" name conflicts in weather.xml, which I've highlighted

below:

<?xml version="1.0" encoding="UTF-8"?>

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 36 © Andrew Davison 2017

<current>

 <city id="1610780" name="Hat Yai">

 <coord lat="7.01" lon="100.48"/>

 <country>TH</country>

 <sun rise="2017-01-01T23:30:31" set="2017-01-02T11:14:18"/>

 </city>

 <temperature max="25" min="25" unit="metric" value="25"/>

 <humidity unit="%" value="94"/>

 <pressure unit="hPa" value="1011"/>

 <wind>

 <speed name="Gentle Breeze" value="3.6"/>

 <gusts/>

 <direction code="NNE" name="North-northeast" value="30"/>

 </wind>

 <clouds name="broken clouds" value="75"/>

 <visibility value="5000"/>

 <precipitation mode="no"/>

 <weather icon="10n" number="501" value="moderate rain"/>

 <lastupdate value="2017-01-02T15:30:00"/>

</current>

The "value" attribute is used nine times in different contexts. This doesn't pose a

problem for freeformatter.com, which quietly generates weather.xsd. The name

conflict is only reported when xjc tries to generate Java classes:

> xjc -p Weather weather.xsd

parsing a schema...

[ERROR] Property "Value" is already defined.

Use <jaxb:property> to resolve this conflict.

 : // many more error messages …

As the error message advises, I need to add jaxb:property annotations to the XSD file

to allow xjc to correctly translate the attributes. For example, the first offender in

weather.xsd is:

<xs:attribute type="xs:float" name="value"/>

Its jaxb:property annotation is:

<xs:attribute type="xs:float" name="value">

 <!-- avoid "value" name conflict -->

 <xs:annotation>

 <xs:appinfo>

 <jaxb:property name="valueAttribute"/>

 </xs:appinfo>

 </xs:annotation>

</xs:attribute>

This same change is applied to all the other conflicting attribute names.

In addition, the new "jaxb" label must be linked to its JAXB schema at the start of the

XSD file:

<!-- in the xs:schema element -->

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 37 © Andrew Davison 2017

jaxb:version="2.1"

If you want to understand what's happening in more detail, the best place to start is the

tutorial at Oracle: https://docs.oracle.com/javase/tutorial/jaxb/intro/.

When xjc is passed this modified weather.xsd file, the Java classes are correctly

generated. Figure 20 shows only the class names to reduce the diagram's size.

Figure 20. The Weather Class Diagrams.

The top-level class is Current which stores the weather attributes as objects.

My UnmarshallWeather.java example examines weather.xml to report if it was

raining on the report day:

// in UnmarshallWeather.java

public class UnmarshallWeather

{

 public static void main(String[] args)

 {

 try {

 JAXBContext jaxbContext =

 JAXBContext.newInstance(Current.class);

 Unmarshaller jaxbUnmarshaller =

 jaxbContext.createUnmarshaller();

 Current currWeather = (Current) jaxbUnmarshaller.unmarshal(

 new File("weather.xml"));

 // get precipitation as a boolean

 String rainingStatus =

 currWeather.getPrecipitation().getValue();

 boolean isRaining = rainingStatus.equals("yes");

 // get date in day/month/year format

 XMLGregorianCalendar gCal =

 currWeather.getLastupdate().getValueAttribute();

 Calendar cal = gCal.toGregorianCalendar();

Java LibreOffice Programming. Chapter 50. XML Draft #2 (20th March 2017)

 38 © Andrew Davison 2017

 SimpleDateFormat formatter =

 new SimpleDateFormat("dd/MM/yyyy");

 formatter.setTimeZone(cal.getTimeZone());

 String dateStr = formatter.format(cal.getTime());

 if (isRaining)

 System.out.println("It was raining on " + dateStr);

 else

 System.out.println("It was NOT raining on " + dateStr);

 }

 catch (JAXBException e) {

 e.printStackTrace();

 }

 } // end of main()

} // end of UnmarshallWeather class

The output is:

It was NOT raining on 02/01/2017

